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determinants for buckling load equations,

shows the boundary conditions

Young' s modulus

stre s s function

dimensionless stress function

dimensionless spring constants

bending moment /

[

axial compression load per unit length

additional in-plane stress resultants induced by

buckling

number of waves in circumferential direction

suffix

NoR V3(1 - _) 2) /Et Z :NJt._c_

radius of cylindrical shell

shell thicknes s

displacements in axial, circumferential and

radial directions

dimensionle s s displacements

axial and circumferential coordinates
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THE INFLUENCE OF THE BOUNDARY CONDITIONS

ON THE BUCKLING LOAD OF CYLINDRICAL

SHELLS UNDER AXIAL COMPRESSION

By Shigeo Kobayashi*

SUMMARY

A new approach to the study of the effect of boundary conditions

on thin walled axial cylinder s loaded with uniform axial compression

leads to a graphical representation that establishes limits on the buck-

ling stress without detailed calculation.

conditions is also studied.

INTRODUC TION

The effect of elastic boundary

The problem of the buckling of a cylindrical shell under uniform

axial compression still contains elements which are not completely under-

stood. Several recent papers have discussed the effect of the prebuckling

deformation and the details of the boundary conditions on the buckling

load. Ohira (Refs. 1 and 2) has shown that the shell will buckle at

values of one-half the classical buckling load (Pcz) for certain boundary

conditions. This result was obtained by studying the local buckling of a

seml-infinite cylinder using the linear theory. Nachbar and Hoff (Ref. 3)

found that, in the case of a free boundary, the buckling load is 0.38 Pcg"

Stein (Ref. 4) determined the buckling load taking into account the pre-

buckling deformation. Stein's analysis used a finite difference approach

Associate Professor at University of Tokyo - Senior Research
Fellow at the California Institute of Technology during preparation

of this paper.



and showed that for the boundary condition S-3 the buckling load was

approximately 0o 4Z Pc_ " Ohira's result for the boundary conditions

S-3 suggests that this 0.58 Pc_ reduction is due to the 0. 50 PcJ

reduction for the S-3 boundary condition and an additional 0. 08 Pc_

reduction due to the prebuckling deformation. Fischer (Ref. 5) and

Almroth (Ref. 6) have also obtained buckling loads for various bound-

ary conditions taking into account the effect of the prebuckling

deformations. When these results are compared with Ohira's, the

effect of prebuckling deformation can be determined for other boundary

conditions.

The present work deals with the effect of elastically supported

boundary conditions on the buckling load. The analysis uses the linear

theory and neglects the effect of the prebuckling deformation.

DIFFERENTIAL EQUATIONS AND GENERAL SOLUTION

If the effect of the prebuckling deformation is neglected, the

differential equations which govern the behavior during buckling of an

axially loaded cylindrical shell are expressed as:

R

_ Et
R dx'

(i)

where N is the axial load per unit length and
0
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The shell geometry and coordinate system are shown in Figure 1.

These equations are the ones given by Donnell (Kef. 7) and use the

following definition of the stress function F:

(2)

In order to make the equations complete the following relations, also

given by Donnell, are necessary

o_¢ w

Z(t.,,') a"F

F_-_ or_-__

(3)

The buckling deformations u, v, w, and the stress function F are

expressed in a Fourier series as follows:

ny

(4. 1)

r( (4.2)

(4. 3)

As is well known, separate eigenvalue problems are derived for each n.

Substituting equation (4) into equation (1), and changing the variable from

x to _ where



the following equations result

X

4=

_-_ + Z_a dt---_ =o

(5. l)

(5. z)

whe r e

-g-
(5. 3)

and
Et

is the classical buckling stress.

Equations (5. i) and (5.2) are solved as follows.

A x (5.2) (where A is an undetermined constant) leads to:

(5.4)

Adding (5. I) to

(6)

I
Then A is selected as 2 4 -A =

In the case q < 1, (the region of interest in this report) the roots of

the above equation are

A,,z -- $ *- _ ,e e- (7)
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Using the definition

(8)

equation (6) can be written as follows:

0 3 :I}Z
(9)

Expressing _] as

are

the characteristic equations o£ (9)

(IO)

The roots of these equations are as follows:

A,. :T e _.-,-_e-_ti

_: Ij2, 3,4

(11)

If the following relation is introduced

__ -_ye
(iZ. 1)

or written in another manner

(12.2)



the eight roots can be easily written as

where

(13)

(_4)

The relation between ? , _2, and _ and the parameters of the problem

q and 4_ 2 is illustrated graphically in Figure Z. As will be shown,

since the values of _ , _ , _ , and _ depend on the boundary conditions,

this figure represents all possible values of q, or Not/Cr d .

For the range of q given by 0<q<l, the ranges of _ and

are

<K _b< _) <.'rf
(15. 1)

Therefore

s,n _Z > 0 cos--_ >0
2.

S,. ,-_> 0 co, .._Z> 0
(15.2,)



It therefore follows that

_, 20 oq kO (16.1)

In order to show that _2 _ 0, 0(2 _ 0 the following calculation is perform

ed

Using equation (1 5) and noting from Figure Z that

it is concluded that a > 0, b _" 0, therefore

.,/.L= > 0 _._. > O (16. Z)

Substituting the general solutions of d_ 1 and _Z into the expressions

for w n and fn' which can be derived from equation (8),

A ,- A= /_,-A=

The following equations are obtained:

+C,,ej''_;.(,.,._-_)*Cse_'_o_(_',_-_)" G,e'_'_,',(_,_,-_)

(17)

where C i ( i = I...8) are arbitrary real constants.



BUCKLING LOAD EQUATION

The equation for the buckling load, or eigenvalue equation, is

now obtained by applying the boundary conditions to the general solution

given by equation (17}. Taking the coordinate system at one end of the

shell as shown in Figure 1, and considering only local buckling in the

region close to the boundary, the constants C5, C6, C7, C 8 can be

taken equal to zero under the condition that w and f are finite as
n n

-_ 0o. Therefore, only four boundary conditions are needed at the end

= 0.

(3) and

The expressions for u and v
n n

N and N from equation (2).
X xy

can be obtained from equation

nV. = -d'-_ -

H )_7_ (18)

4Z)
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Using the relation between the moment M x and the deflection w

(i9)

all of the boundary conditions can now be expressed as functions of w n

and f.
n

The eigenvalue equation has been obtained for eight sets of

boundary conditions. The procedure will be illustrated for the following

set of boundary conditions:

aw= o FI,.o li : oW =0 d_
(zo)

at x=0

Using equations (17), (18) and (20) the following set of linear homogeneous

equations is obtained for the four constants C 1, CZ, C3, and C4:

I O

cos_ _n(_

,#., - 0( I

(-/Z_, CoS _-(X, SIn,)

l o

Co_ - 5in (_j)

.,g-,. -oQ

C,

= 0

C3

C4

In order that a nontrivial solution of these equations exists the deter-

minant of the coefficients must vanish. This condition gives the following

eigenvalue equation:

$1n_¢ = 0

In a similar manner the other seven sets of boundary conditions consid-

ered lead to an eigenvalue equation. The boundary conditions and the

eigenvalue equations are given below.

9



W = O _, = 0 u_,=o

- clef-, (z,,,)_"dQd#.---'÷ - ET * =o

V---O

V¢_=O

•_.__d_w;,: o

S-?-.

M/=O I_x = 0 _X = 0

--_n "= 0

W. =0

,t t,'-

_'W.__.m_,_ 0
&f_,"

v=O

S-3

W "'m 0 I'_x = 0 U,:-O

_.¢ dr.
W. '--0

_ d,l:. =0
EE,
d._,, =0
d.L'-

(zl)

(zz)

(z3)

This designation of the boundary conditions is the same as that of

Ohira (l_ef. 2) and Almroth (Ref. 6), but is different from that of

Sobel (iKef. 8).

I0



S-4

G-1

v_: 0 M_ = o I'i_ : 0

-F.=O

W. = 0

a'w.
c/_---r--o

W = o ,__..ww= 0 u,.= 0 ¢=0
ax

_cl.'-_.,_ (Z+ p)/3"____&,=0

W. '=0

(24)

(Z5)

C-2

v/--o _w Nx o v o
-_=0 - =

_--0

W',-_ 0

d_(" =0

d w=0
d.L (Z6)
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C-3

C-4

:-0 _. =0 _x,_ =0W=- 0 {_x

d_P =
Wn - O

_tw.

aw Hx o I'[_21=0w--o _-=0 :
4:.--o
W_ :0

(27)

(28)

Since _ and _/2 have the following.ranges

z _ (29)

then

In addition

51n _ 70 cos _--_>0

(30)

(31)

since (32)
1T

"frith this information, it can easily be seen that the eigenvalue equations

for the boundary conditions S-l, S-2, C-l, C-2, C-3, C-4 do not have

any solution with an eigenvalue lower than the classical buckling load q=l.

12



In order to examine the boundary conditions

value of Cos (%5+ _2 ) must be determined.

w(i.e" < 1
for the region of _ > -_ q _), _ > (¢ +

S-3, S-4, the

3
Since w_(_ + 2_-)>_-_,

)> _ , which implies

that Cos (¢ + _) < 0. However, in the region _ _.' it is possible

for the value of Cos (_p + J_2 } to be greater than zero, depending on

the value of 4_ 2. The smaller the value of 4_ 2, the nearer to q = 1/2

this transition occurs. The value of 4_ 2 is not equal to zero, but

becomes quite small for the smallest value of n which is equal to 2.

Z_ t t

This is true since 462 = _(_) and _ is small for thin shells.

Therefore, it is easily concluded that the cases S-3 and S-4 have a

buckling load lower than q = 1. The value of qcr is very close to

1/2, corresponding to n = 2. These conclusions are the same as

those of Ohira (Ref. 2). However, the present expressions of the

eigenvalue determinant directly leads to this conclusion without any

numerical calculation.

ELASTICALLY SUPPORTED BOUNDARY

The following uncoupled spring type linear elastic support at

the boundary x = 0 is now considered:

6W
(33. 1)

(33.2)

(33. 3)

13



where

and circumferential constraints.

is rigid, giving the condition

W_ -0

Substituting equations (4), (18),

c 1, c 2 and c 3 are the spring constants for the rotation, axial

It is assumed that the radial restraint

(34. i)

(i9) into equations (33) the following

expressions for the elastically supported edges are obtained.

(34. z)

(34.3)

(34, 4)

where

k I - , E¢

kz (35)

are the dimensionless spring constants. Substituting equations (17) into

equations (34) a set of linear homogeneous equations for the four unknown

constants C 1, C Z, C 3 and C 4 is obtained. The determinant of the

coefficients of these equations is as follows:

14
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o+k&,(.3>_,-_,)

cos #

¢.n
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\

Evaluation of this determinant gives the following result.

(36)

If the values of the spring constants k 1, k 2 and k 3 are given, the

eigenvalue q can be determined from setting equation (36) equal to zero.

The results of the previous section have shown that the lowest

eigenvalue (0. 5 Pc_ ) occurs for the boundary conditions Nxy = 0, and

M = 0. The effect of the axial boundary condition is not important
X •

since either condition N x = 0 or u = 0 gives the same eigenvalue. In

order to show the dependence of qcr on the values of the k 1, k 3

three cases will be treated. For all three cases the condition N
X

is taken for simplicity.

in Figure 3.

=0

The relation of these three cases is illustrated

Case A, k 2 = k 1 = 0

For this case the determinant, equation (36), simplifies to

Dsq -f ksDsz -o (37)

Using equations (22) and (24) this becomes

k 3 (38)

16



For a given k 3 the smallest value of the eigenvalue q is found by

varying the value of the circumferential wave number 4_ 2. This

calculation, therefore, determines the largest value of _ for a given

k 3. The calculation can also be performed by determining the largest

value of k 3 for a given value of _, or q, by changing the value of 4_ 2.

Therefore, the maximum value of k 3 with respect to _ is found by

the following condition,

ak_

which gives the result

The conditions on the ranges of _ and

range of _ + 3_ to the following.
Z

, equation (i5. i) limits the

3_ _"
Therefore, the maximum k 3 is given by _ + 2 - 2 " In addition,

there is the condition that _ > _. This shows that the maximum

value of k 3" is given by the following values of _ .

(40.l)

3 3 36°>_70

Using equations (38) and (40) the relation between k 3 and

found to be

6o° ° o
Sin

(40.z)

_, or q, is

(41. i)

17



(41. z)

These results are shown in Figure 4. The circumferential wave number

n has its lowest value (n = 2) in the range k3_ 1, but increases for

Case B, k 2 = k 3 = 0

In this case the buckling load equation, equation (36), becomes

¢ k, : 0

Using equations (24) and (Z8) the follo_v[ng relation is obtained for

(42)

k 1 •

(43)

Again looking for the largest value of

dk,
2-'_" :o

the extreme conditions is given by

k I for a fixed

(44)

However, this condition can not be satisfied due to the restrictions on

- _ given by equation (32). Examination of equation (43) shows that

for the range of _ that is permitted, the maximum value of kl

occurs for _ = 4. This gives us the final equation for this case.

18



(45)

The result of this calculation is shown in Figure 4.

ponding to k 1 < 1, is the same as Case Afor k 3•

The part corres-

1.

Case C, k 3 = 0

In this case only the axial constraint is zero and the bucklin'g

load equation_ equation (36), becomes,

Using equations (2Z), (Z4), (Z6), and (28) this buckling load equation can

be written as follows:

This equation leads to the simple conclusion that if

k,k3- i 0 (48)

there exist no eigenvalues lower than the value q = i, which is the

classical buckling load. Therefore, if an experimental set up has end

fixtures that are rigid enough such that k 1- k 3 _ 1, this analysis shows

that there is no decrease in the buckling load due to the elastically

supported boundaries. The result of equation (48) is illustrated in

Figure 5.

19



CONCLUSION

The buckling load equations for a semi-infinite cylindrical shell

have been obtained for eight sets of boundary conditions using the linear

Donnell equationsl These expressions directly lead to the same conclu-

sions as that of Ohira (l_ef. 2) without any numerical computation. It is

found that when the constraint of the boundary in the circumferential

direction is released for the simply supported cases (S-3 and S-4) the

buckling load drops to approximately 1/2 the classical buckling load.

The minimum buckling load occurs for the smallest number of circum-

ferential waves (n = 2). However, the accuracy of the Donnell equations

is somewhat in dohbt for small number of circum:gerentlal waves.

Nevertheless, it can easily be shown from the buckling load equations

for these two cases that even for n = 5 and l_/t _ I00 the buckling load

is always less than 0.60 Pc_ " Therefore, the drop in the buckling load

due to the lack of circumferential constraint as predicted by this analysis

is real.

In addition, the effect of elastically supported boundaries has

been calculated. An uncoupled spring type support has been assumed

for the circumferential, axial and rotation constraints. The radial con-

straint was assumed to be rigid. The buckling load has been calculated

for three different cases. It was found that the effect of the rotation con-

straint and the circumferential constraints is about the same if the other

constraints are zero. In addition, if both moment and circumferential

constraint are acting with the axial constraint zero, there are no buck-

ling loads lower than the classical buckling load if the product of the two

non-dimensional spring constants is greater than i.

2O
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